Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
iScience ; 26(6): 106802, 2023 Jun 16.
Article in English | MEDLINE | ID: covidwho-2307469

ABSTRACT

Breastmilk contains antibodies that could protect breastfed infants from infections. In this work, we examined if antibodies in breastmilk could neutralize SARS-CoV-2 in 84 breastmilk samples from women that were either vaccinated (Comirnaty, mRNA-1273, or ChAdOx1), infected with SARS-CoV-2, or both infected and vaccinated. The neutralization capacity of these sera was tested using pseudotyped vesicular stomatitis virus carrying either the Wuhan-Hu-1, Delta, or BA.1 Omicron spike proteins. We found that natural infection resulted in higher neutralizing titers and that neutralization correlated positively with levels of immunoglobulin A in breastmilk. In addition, significant differences in the capacity to produce neutralizing antibodies were observed between both mRNA-based vaccines and the adenovirus-vectored ChAdOx1 COVID-19 vaccine. Overall, our results indicate that breastmilk from naturally infected women or those vaccinated with mRNA-based vaccines contains SARS-CoV-2 neutralizing antibodies that could potentially provide protection to breastfed infants from infection.

2.
Sci Rep ; 12(1): 13404, 2022 08 04.
Article in English | MEDLINE | ID: covidwho-1972664

ABSTRACT

We aimed to analyze the nasopharyngeal microbiota profiles in pregnant women with and without SARS-CoV-2 infection, considered a vulnerable population during COVID-19 pandemic. Pregnant women were enrolled from a multicenter prospective population-based cohort during the first SARS-CoV-2 wave in Spain (March-June 2020 in Barcelona, Spain) in which the status of SARS-CoV-2 infection was determined by nasopharyngeal RT-PCR and antibodies in peripheral blood. Women were randomly selected for this cross-sectional study on microbiota. DNA was extracted from nasopharyngeal swab samples, and the V3-V4 region of the 16S rRNA of bacteria was amplified using region-specific primers. The differential abundance of taxa was tested, and alpha/beta diversity was evaluated. Among 76 women, 38 were classified as positive and 38 as negative for SARS-CoV-2 infection. All positive women were diagnosed by SARS-CoV-2 IgG and IgM/IgA antibodies, and 14 (37%) also had a positive RT-PCR. The overall composition of the nasopharyngeal microbiota differ in pregnant women with SARS-CoV-2 infection (positive SARS-CoV-2 antibodies), compared to those without the infection (negative SARS-CoV-2 antibodies) (p = 0.001), with a higher relative abundance of the Tenericutes and Bacteroidetes phyla and a higher abundance of the Prevotellaceae family. Infected women presented a different pattern of microbiota profiling due to beta diversity and higher richness (observed ASV < 0.001) and evenness (Shannon index < 0.001) at alpha diversity. These changes were also present in women after acute infection, as revealed by negative RT-PCR but positive SARS-CoV-2 antibodies, suggesting a potential association between SARS-CoV-2 infection and long-lasting shift in the nasopharyngeal microbiota. No significant differences were reported in mild vs. severe cases. This is the first study on nasopharyngeal microbiota during pregnancy. Pregnant women with SARS-CoV-2 infection had a different nasopharyngeal microbiota profile compared to negative cases.


Subject(s)
COVID-19 , Microbiota , Antibodies, Viral , Cross-Sectional Studies , Female , Humans , Immunoglobulin M , Microbiota/genetics , Nasopharynx , Pandemics , Pregnancy , Pregnant Women , Prospective Studies , RNA, Ribosomal, 16S/genetics , SARS-CoV-2
3.
Nutrients ; 14(10)2022 May 19.
Article in English | MEDLINE | ID: covidwho-1862859

ABSTRACT

Breastfeeding is key for infant development and growth. Breast milk contains different bioactive compounds including antibodies. Recent studies have demonstrated the presence of breast milk SARS-CoV-2 antibodies after maternal infection and vaccination. However, the potential impact on the infant has not been explored yet. As a first step, we aimed at assessing the potential persistence of SARS-CoV-2 IgA and IgG antibodies from infected and vaccinated women in the gastrointestinal tract of the infants by means of an in vitro-simulated gastrointestinal digestion approach. Breast milk samples from 10 lactating women receiving mRNA vaccination against SARS-CoV-2 (n = 5 with BNT162b2 mRNA and n = 5 with mRNA-1273) and also, COVID-19 infected (n = 5) were included. A control group with women with no exposure to the virus (n = 10 pre-pandemic) were also studied. The presence of IgA and IgG SARS-CoV-2 antibody levels was determined by ELISA after the gastric and intestinal stages. The impact of digested antibodies on infant gut microbiota was tested by simulating colonic fermentation with two different fecal inoculums: infants from vaccinated and non-vaccinated mothers. Specific gut microbial groups were tested by targeted qPCR. In vitro infant gastrointestinal digestion significantly decreased the levels of both anti-SARS-CoV-2 IgA and IgG. However, both remained resistant in all the study groups except in that evaluating breast milk samples from infected women, in which IgG was degraded below the cut-off values in the intestinal phase. No effect of the antibodies on microbiota were identified after digestion. In conclusion, antibody levels against SARS-CoV-2 are reduced after in vitro-simulated gastrointestinal tract but remain present, so a positive biological effect could be expected from this infant immunization pathway.


Subject(s)
COVID-19 , Milk, Human , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Child , Digestion , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Lactation , RNA, Messenger , SARS-CoV-2
4.
Genome Med ; 14(1): 42, 2022 04 21.
Article in English | MEDLINE | ID: covidwho-1799094

ABSTRACT

BACKGROUND: Breast milk is a vehicle to transfer protective antibodies from the lactating mother to the neonate. After SARS-CoV-2 infection, virus-specific IgA and IgG have been identified in breast milk, however, there are limited data on the impact of different COVID-19 vaccine types in lactating women. This study is aimed to evaluate the time course of induction of SARS-CoV-2-specific IgA and IgG in breast milk after vaccination. METHODS: In this prospective observational study in Spain, 86 lactating women from priority groups receiving the vaccination against SARS-CoV-2 were included. Breast milk samples were collected longitudinally at seven or eight-time points (depending on vaccine type). A group with confirmed SARS-CoV-2 infection (n=19) and a group of women from pre-pandemic time (n=20) were included for comparison. RESULTS: Eighty-six vaccinated lactating women [mean age, 34.6 ± 3.7 years] of whom 96% were Caucasian and 92% were healthcare workers. A total number of 582 milk samples were included, and vaccine distribution was BioNTech/Pfizer (BNT162b2, n=34), Moderna (mRNA-1273, n=20), and AstraZeneca (ChAdOx1 nCoV-19, n=32). For each vaccine, 7 and 8 longitudinal time points were collected from baseline up to 30 days after the second dose for mRNA vaccines and adenovirus-vectored vaccines, respectively. A strong reactivity was observed for IgG and IgA after vaccination mainly after the 2nd dose. The presence and persistence of specific SARS-CoV-2 antibodies in breast milk were dependent on the vaccine type, with higher IgG and IgA levels in mRNA-based vaccines when compared to AstraZeneca, and on previous virus exposure. High intra- and inter-variability were observed, being relevant for IgA antibodies. In milk from vaccinated women, anti-SARS-CoV-2 IgG was significantly higher while IgA levels were lower than in milk from COVID-19-infected women. Women with previous COVID-19 increased their IgG antibodies levels after the first dose to a similar level observed in vaccinated women after the second dose. CONCLUSIONS: COVID-19 vaccination induced anti-SARS-CoV-2 IgA and IgG in breast milk with higher levels after the 2nd dose. Levels of anti-SARS-CoV-2 IgA and IgG are dependent on the vaccine type. Further studies are warranted to demonstrate the protective antibody effect against COVID-19 in infants from vaccinated and infected mothers. TRIAL REGISTRATION: NCT04751734 (date of registration is on February 12, 2021).


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Female , Humans , Immunoglobulin A , Immunoglobulin G , Infant , Infant, Newborn , Lactation , Longitudinal Studies , Milk, Human , Vaccination
5.
Arch Dis Child Fetal Neonatal Ed ; 107(2): 216-221, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1367412

ABSTRACT

OBJECTIVES: To develop and validate a specific protocol for SARS-CoV-2 detection in breast milk matrix and to determine the impact of maternal SARS-CoV-2 infection on the presence, concentration and persistence of specific SARS-CoV-2 antibodies. DESIGN AND PATIENTS: This is a prospective, multicentre longitudinal study (April-December 2020) in 60 mothers with SARS-CoV-2 infection and/or who have recovered from COVID-19. A control group of 13 women before the pandemic were also included. SETTING: Seven health centres from different provinces in Spain. MAIN OUTCOME MEASURES: Presence of SARS-CoV-2 RNA in breast milk, targeting the N1 region of the nucleocapsid gene and the envelope (E) gene; presence and levels of SARS-CoV-2-specific immunoglobulins (Igs)-IgA, IgG and IgM-in breast milk samples from patients with COVID-19. RESULTS: All breast milk samples showed negative results for presence of SARS-CoV-2 RNA. We observed high intraindividual and interindividual variability in the antibody response to the receptor-binding domain of the SARS-CoV-2 spike protein for each of the three isotypes IgA, IgM and IgG. Main Protease (MPro) domain antibodies were also detected in milk. 82.9% (58 of 70) of milk samples were positive for at least one of the three antibody isotypes, with 52.9% of these positive for all three Igs. Positivity rate for IgA was relatively stable over time (65.2%-87.5%), whereas it raised continuously for IgG (from 47.8% for the first 10 days to 87.5% from day 41 up to day 206 post-PCR confirmation). CONCLUSIONS: Our study confirms the safety of breast feeding and highlights the relevance of virus-specific SARS-CoV-2 antibody transfer. This study provides crucial data to support official breastfeeding recommendations based on scientific evidence. Trial registration number NCT04768244.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Milk, Human/immunology , Adult , Antibodies, Viral/analysis , Coronavirus Envelope Proteins/analysis , Coronavirus Nucleocapsid Proteins/analysis , Female , Humans , Immunoglobulins/analysis , Longitudinal Studies , Phosphoproteins/analysis , Prospective Studies , RNA, Viral/analysis , SARS-CoV-2 , Spain
6.
Semin Perinatol ; 45(6): 151450, 2021 10.
Article in English | MEDLINE | ID: covidwho-1272722

ABSTRACT

Human milk is the gold standard for infant nutrition during the first months of life since it is perfectly adapted to the neonatal nutritional requirements and supports infant growth and development. Human milk contains a complex nutritional and bioactive composition including microorganisms and oligosaccharides which would also contribute to the gut and immune system maturation. Despite the growing evidence, the factors contributing to milk microbes' variations and the potential functions on the infant's gut are still uncovered. This short-review provides a general overview of milk microbiota, potential factors shaping its composition, contribution to the infant microbiota and immune system development, including the suggested biological relevance for infant health as well as the description of tools and strategies aimed to restore and module microbes in milk.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Breast Feeding , Female , Humans , Infant , Infant Health , Infant Nutritional Physiological Phenomena , Infant, Newborn , Milk, Human
7.
Breastfeed Med ; 16(1): 29-38, 2021 01.
Article in English | MEDLINE | ID: covidwho-1228415

ABSTRACT

In addition to providing life-giving nutrients and other substances to the breastfed infant, human milk can also represent a vehicle of pathogen transfer. As such, when an infectious disease outbreak, epidemic, or pandemic occurs-particularly when it is associated with a novel pathogen-the question will naturally arise as to whether the pathogen can be transmitted through breastfeeding. Until high-quality data are generated to answer this question, abandonment of breastfeeding due to uncertainty can result. The COVID-19 pandemic, which was in full swing at the time this document was written, is an excellent example of this scenario. During these times of uncertainty, it is critical for investigators conducting research to assess the possible transmission of pathogens through milk, whether by transfer through the mammary gland or contamination from respiratory droplets, skin, breast pumps, and milk containers, and/or close contact between mother and infant. To promote the most rigorous science, it is critical to outline optimal methods for milk collection, handling, storage, and analysis in these situations, and investigators should openly share their methods in published materials. Otherwise, the risks of inconsistent test results from preanalytical and analytical variation, false positives, and false negatives are unacceptably high and the ability to provide public health guidance poor. In this study, we provide "best practices" for collecting human milk samples for COVID-19 research with the intention that this will also be a useful guide for future pandemics.


Subject(s)
Benchmarking , Breast Feeding/methods , COVID-19/prevention & control , Infection Control/methods , Infectious Disease Transmission, Vertical/prevention & control , COVID-19/transmission , Female , Humans , Infant, Newborn , Intention , Milk, Human/virology , Mothers/psychology , SARS-CoV-2
8.
Nutrients ; 13(2)2021 Jan 30.
Article in English | MEDLINE | ID: covidwho-1055095

ABSTRACT

The trend toward using phytonutrients and/or nutraceuticals (P/Ns) with the aim of impacting immune health has increased in recent years. The main reason is that properties of P/Ns are associated with possible immunomodulating effects in the prevention and complementary treatment of viral diseases, including COVID-19 and other respiratory infections. In the present review, we assess the scientific plausibility of specific P/Ns for this purpose of preventative and therapeutic interventions against COVID-19, with an emphasis on safety, validity, and evidence of efficacy against other viruses. Five potential candidates have been identified after reviewing available studies (in silico, in vitro, and in vivo) in which certain flavonoids have demonstrated a potential for use as adjuvant therapeutic agents against viral infections, including COVID-19. As these are often better tolerated than pharmacological treatments, their use could be more widely considered if additional detailed studies can validate the existing evidence.


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Dietary Supplements , Phytochemicals/pharmacology , SARS-CoV-2 , Humans
SELECTION OF CITATIONS
SEARCH DETAIL